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ON THE APPROXIMATION OF SHORTEST COMMON SUPERSEQUENCES
AND LONGEST COMMON SUBSEQUENCES*

TAO JIANG AND MING LI

Abstract. The problems of finding shortest common supersequences (SCS) and longest common subsequences
(LCS) are two well-known NP-hard problems that have applications in many areas, including computational molec-
ular biology, data compression, robot motion planning, and scheduling, text editing, etc. A lot of fruitless effort has
been spent in searching for good approximation algorithms for these problems. In this paper, we show that these
problems are inherently hard to approximate in the worst case. In particular, we prove that (i) SCS does not have a
polynomial-time linear approximation algorithm unless P NP; (ii) There exists a constant 6 > 0 such that, if SCS has
a polynomial-time approximation algorithm with ratio log n, where n is the numberof input sequences, then NP is con-
tained in DTIME(2pyg "); (iii) There exists a constant 3 > 0 such that, ifLCS has a polynomial-time approximation
algorithm with performance ratio n, then P NP. The proofs utilize the recent results ofArora et al. [Proc. 23rd IEEE
Symposium on Foundations of Computer Science, 1992, pp. 14-23] on the complexity of approximation problems.

In the second part of the paper, we introduce a new method for analyzing the average-case performance of
algorithms for sequences, based on Kolmogorov complexity. Despite the above nonapproximability results, we
show that near optimal solutions for both SCS and LCS can be found on the average. More precisely, consider a
fixed alphabet E and suppose that the input sequences are generated randomly according to the uniform probability
distribution and are of the same length n. Moreover, assume that the number of input sequences is polynomial in n.
Then, there are simple greedy algorithms which approximate SCS and LCS with expected additive errors O(n0707)
and O(n 1/2+E) for any E > 0, respectively.

Incidentally, our analyses also provide tight upper and lower bounds on the expected LCS and SCS lengths for a
set of random sequences solving a generalization of another well-known open question on the expected LCS length
for two random sequences [K. Alexander, The rate ofconvergence ofthe Inean length of the longest common subse-
quence, 1992, manuscript], IV. Chvatal and D. Sankoff, J. Appl. Probab., 12 (1975), pp. 306-315], [D. Sankoff and
J. Kruskall, eds., Time Warps, String Edits, and Macromolecules: The Theory and Practice ofSequence Comparison,
Addison-Wesley, Reading, MA, 1983].

Key words, shortest common supersequence, longest common subsequence, approximation algorithm, NP-
hardness, average-case analysis, random sequence
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1o Introduction. For two sequences s s... Sm and t... tn, we say that s is a
subsequence of and, equivalently, is a supersequence of s, if for some i < < ira,
sj tij. Given a finite set of sequences S, a shortest common supersequence (SCS) of S is
a shortest possible sequence s such that each sequence in S is a subsequence of s. A longest
common subsequence (LCS) of S is a longest possible sequence s such that each sequence in
S is a supersequence of s.

These problems arise naturally in many practical situations. Researchers in many different
areas have been trying for years to obtain partial solutions: dynamic programming, when the
number of sequences is constant, or, ad hoc algorithms when we do not care about absolute
optimal solutions.

In artificial intelligence (specifically, planning), the actions of a robot (and human for
that matter) need to be planned. A robot usually has many goals to achieve. To achieve
each goal the robot sometimes needs to perform a (linearly ordered) sequence of operations,
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APPROXIMATION OF SUPERSEQUENCES AND SUBSEQUENCES 1123

where identical operations in different sequences may be factored out and only performed
once. Optimally merging these sequences of actions of the robot implies efficiency. Practical
examples include robotic assembly lines [8] and metal cutting in the domain of automated
manufacturing 10], 15]. The essence of solutions to such problems are good approximation
algorithms for the SCS problem. The SCS problem also has applications in text editing [24],
data compression [27], and query optimization in database systems [25].

In molecular biology, an LCS (of some DNA sequences) is commonly used as a measure
of similarity in the comparison of biological sequences [6]. Efficient algorithms for finding an
LCS could be very useful. Many papers in molecular biology have been written on this issue.
We refer the readers to [6], [7], and [26]. Other applications of the LCS problem include
the widely used diff file comparison program [1], data compression, and syntactic pattern
recognition 19].

For a long time, it has been well known that the SCS and LCS problems (even on a binary
alphabet) are all NP-hard [9], [21], [23]. For n sequences of length m, it is known that, by
dynamic programming techniques, both SCS and LCS problems can be solved in O(m") time;
this result is independently a result ofmany authors in computer science (e.g., 11 ], [29]) and bi-
ology. However, since the parameter rn is usually extremely large in practice (e.g., in computer
text editing and DNA/RNA sequence comparison), the time requirement O(m") is intolerable
even for small to moderate n. There have been attempts to speed up the dynamic programming
solution for LCS 12], 13 ]. The improved algorithms still run in O (mn) time in the worst case.

In the very first paper [21] that proves the NP-hardness of the SCS and LCS problems,
Maier already asks for approximation algorithms. For the past many years, various groups of
people in the diverse fields of artificial intelligence, theoretical computer science, and biology
have looked for heuristic algorithms to approximate the SCS and LCS problems, but so far no
polynomial time algorithms with guaranteed approximation bounds have been found.

In this paper, we show that it is indeed not surprising that the search for good approximation
algorithms has been fruitless, because good approximations of these problems would imply
that P NP. Specifically, we show the following:

1. No polynomial-time algorithm can achieve a constant approximation ratio for any
constant for the SCS problem unless P NP. (The approximation ratio is the worst-
case ratio between the approximate solution and the optimal solution.)

2. There exists a constant 6 > 0 such that, if SCS has a polynomial-time approximation
algorithm with ratio log n, where n is the number of input sequences, then NP is
contained in DTIME(2pyg n).

3. There exists a constant > 0 such that, if the LCS problem has a polynomial-time
approximation algorithm with performance ratio n, then P NP.

The above results assume an unbounded alphabet. Our proofs utilize the recent results of
Arora et al. on the complexity of approximation problems [3]. An overview of the results
in [3] that are of special interest to us will be given in the next section.

On the other hand, one should not be too discouraged by the nonapproximability results
above. Many heuristic algorithms for SCS and LCS seem to work well in practice. They are
usually greedy-style algorithms and run very fast. These algorithms cannot always guarantee
an optimal solution or even an approximately good solution, but they produce a satisfactory
solution in most cases. In this paper, we try to provide a (partial) theoretical explanation by
proving that both SCS andLCS can be indeed very well approximated on the average. Consider
the SCS and LCS problems on a fixed alphabet E. Suppose that the input sequences are of
length n, the number of input sequences is polynomial in n, and all sequences are equally likely
and mutually independent. We show that some simple greedy algorithms approximate SCS
and LCS with expected additive errors O(n0"707) and O(n 1/2+) for any > 0, respectively.
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1124 TAO JIANG AND MING LI

(The additive error is the difference between the approximate solution and optimal solution.)
The algorithm for SCS is actually interesting and perhaps useful in practice, although the
algorithm for LCS is somewhat trivial and impractical. Our analyses are based on a new
average-case analysis method using Kolmogorov complexity.

It also turns out that such analyses enable us also to obtain a tight bound on the expected
length of an LCS or an SCS of random sequences. Our results show that, over a fixed alphabet
of size k, the expected length of an LCS (or an SCS) for n random sequences of length n is

-t-- n l/2+e for any e > 0 (or (..-" -+- O(n’77), respectively). In contrast, the tight bound
on the expected LCS length for two random sequences is a well-known open question in
statistics [2], [5], [24].

In 2, we review the recent surprisingly fast development in the complexity theory of
approximation. The hardness of approximating an SCS or an LCS is shown in 3. We analyze
the average-case performance of some greedy algorithms in 4. Some concluding remarks are
given in 5.

2. Recent works on the complexity of approximation. Designing efficient approxi-
mation algorithms with good performance guarantees is not an easy task. This is a result
of the fact that the approximation of a large number of optimization problems is intractable.
On the other hand, proving the intractability of an approximation problem can also be hard,
essentially because the approximability properties are generally not preserved in a conven-
tional polynomial-time reduction [9]. Nevertheless, there have been some very significant
developments in the last five years. We only discuss the work that will be needed for our
results.

In 1988, Papadimitriou and Yannakakis defined a special reduction that. preserves certain
approximability properties [22]. Using this reduction, based on Fagin’s syntactic definition
of the class NP, they introduced a class of natural optimization problems, MAX SNP, which
includes the vertex cover and independent set problems on bounded-degree graphs, max cut,
various versions ofmaximum satisfiability, etc. It is known that every problem in this class can
be approximated within some constant factor, and a polynomial-time approximation scheme
(PTAS) for any MAX SNP-complete problem would imply one for every other problem in
the class. (A problem has a PTAS if, for every fixed e > 0, the problem can be approximated
within factor + e in polynomial time.)

Recently, Arora et al. made some significant progress in the theory ofinteractive proofs [3].
As an application of their results, they showed that if any MAX SNP-hard problem has a
PTAS, then P NP, thus confirming the common belief that no MAX SNP-hard problem
has a PTAS. Their results also show that, unless P NP, the largest clique problem does not
have a polynomial-time approximation algorithm with performance ratio n for some constant
3. Using these results and the graph product technique, Karger, Motwani, and. Ramkumar
are able to prove that longest paths cannot be approximated within any constant factor [14].
Very recently, Lund and Yannakakis showed that graph coloring cannot be approximated with
ratio n for some e > 0 and set covering cannot be approximated with ratio c log n for any
c < [201.

Before we leave this section, we recall the definition of the special reduction introduced
by Papadimitriou and Yannakakis [22], used to show the MAX SNP-hardness of a problem.
Suppose that FI and I-I’ are two optimization (i.e., maximization or minimization) problems.
We say that rI L-reduces (linearly reduces) to FI’ if there are two polynomial-time algorithms
f and g and constants c, fl > 0 such that, for any instance I of l-I,

1. OPT((/)) < oe. OPT(I);
2. given any solution of f(1) with weight w’, algorithm g produces in polynomial time

a solution of I with weight w satisfying Iw OPT(I)I _</31w’ OPT(f(I))I.

D
ow

nl
oa

de
d 

05
/1

5/
15

 to
 1

28
.4

.3
1.

97
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



APPROXIMATION OF SUPERSEQUENCES AND SUBSEQUENCES 1125

The following are two simple facts concerning L-reductions. First, the composition of
two L-reductions is also an L-reduction. Second, if problem 1-I L-reduces to problem 1-I’
and lq’ can be approximated in polynomial time within a factor of / e, then FI can be
approximated within factor / otfle. In particular, if FI’ has a PTAS, then so does FI.

A problem is MAX SNP-hard if every problem in MAX SNP can be L-reduced to it.
Thus, by the result of Arora et al., a MAX SNP-hard problem does not have a PTAS unless
P=NP.

3. Nonapproximability of SCS and LCS. In this section, we show that there do not
exist polynomial-time approximation algorithms for SCS and LCS with good performance
ratios. The proof for LCS is a direct reduction from the largest clique problem. The proof
for SCS is more involved. We first show that a restricted version of SCS, in which every
input sequence is of length 2 and every letter of the alphabet appears at most three times in
the input sequences, is MAX SNP-hard. Thus this restricted version of SCS does not have a
PTAS, assuming that P NP. Then we define the product of sets of sequences and relate the
SCS of such a product to the SCS’s of the components constituting the product. Finally, we
demonstrate that a polynomial-time constant ratio approximation algorithm for SCS would
imply a PTAS for the restricted SCS by blowing up instances using the product of sets of
sequences.

3.1. Approximating LCS is hard.
THEOREM 3.1. There exists a constant > 0 such that, if the LCS problem has a

polynomial time-approximation algorithm with performance ratio n, where n is the number

of input sequences, then P NP.
Proof We reduce the largest clique problem to LCS. Let G (V, E) be a graph and

V {v v,, be the vertex set. Our alphabet I2 is chosen to be V.
Consider a vertex 1) and suppose that vi is adjacent to vertices vi, rio, where it <
< iq. For convenience, let i0 0 and iq+.l n / 1. Let p be the unique index such that

0 _< p _< q and ip < < ip+l. We include the following two sequences"

X l) l)ip 1) 1) l)i 1)i+ lYn,

X U Ui- l)i + l)n Ui lYip_ l)iq

LetS={xi,xill < < n}.
LEMMA 3.2. The graph G has a clique of size k if and only if the set S has a common

subsequence of length kfor any k.

Proof The "only if" part is clear. To prove the "if" part, let y be a common subsequence
for S. If vi appears in y, then the sequence xi makes sure that all vertices on the left of vi in
y are adjacent to vi in G and, similarly, the sequence x[ ensures that that all vertices on the
fight of vi in y are adjacent to vi in G. Thus the vertices appearing in y actually form a clique
of G.

The proof is completed by recalling the result of Arora et al. which states that, unless
P NP, the largest clique problem does not have a polynomial-time approximation algorithm
with performance ratio n on graphs with n vertices for some constant > 0 [3].

The above result shows that for some constant 6 > 0, there is no algorithm that, given
a set S of n sequences, will find a common subsequence of length at least OPT(S)/n in
polynomial time. But the question of whether there might be some other < 1, such that
one can find a common subsequence of length at least OPT(S )/n in polynomial time, still
remains open. We conjecture that the answer is negative.

It is also natural to measure the performance of an approximation algorithm for LCS
in terms of the size of the alphabet or the maximum length of its input sequences. Clearly
Theorem 3.1 holds when n is replaced by these parameters.
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1126 TAO JIANG AND MING LI

We now consider the approximation of LCS on a fixed alphabet. Let the alphabet I2
{a ak }. It is trivial to show that LCS on 12 can be approximated with ratio k.

THEOREM 3.3. For any set S of sequences from 12, the algorithm, Long-Run, finds a
common subsequencefor S of length at least OPT(S) / k.

ALGORITHM LONG-RUN.
Find maximum m such that a is a common subsequence of all input sequences for some

a E 12. Output am as the approximation of LCS.
The question of whether LCS on a bounded alphabet is MAX SNP-hard remains open.

Although we believe that the answer is "yes," even when the alphabet is binary, we have not
been able to establish an L-reduction from any known MAX SNP-hard problem. Observe
that Maier’s construction for the NP-hardness of LCS on a bounded alphabet [21 does not
constitute an L-reduction. In his construction, an instance G of vertex cover is mapped to an
instance S of LCS (or SCS) with the property that OPT(S) is at least quadratic in OPT(G).

Conjecture. LCS on a binary alphabet is MAX SNP-hard.

3.2. Restricted versions of SCS and MAX SNP-hardness. Maier proved the NP-
hardness of SCS on an unbounded alphabet by reducing the vertex cover problem to SCS [21 ].
For any graph G of n vertices and m edges, the construction guarantees that G has a vertex
cover of size if and only the constructed instance of SCS has a common supersequence of
length 2n + 6m + 8 max{n, m} + t. It is easy to see that the reduction is actually linear if the
graph G is of bounded degree. Since the vertex cover problem on bounded-degree graphs is
MAX SNP-hard, so is SCS.

Let SCS(/, r) denote the restricted version ofSCS in which each input sequence is oflength
and each letter appears at most r times totally in all sequences. Such restricted problems

have .been recently studied by Timkovskii [28]. We will need the version SCS(2, 3) later to
prove that SCS cannot be linearly approximated. It is known that SCS(2, 2) can be solved in
polynomial time and SCS(2, 3) is NP-hard [28]. Obviously, SCS(/, r) can be approximated
with ratio r. This is true because each letter appears only r times in total in an instance of
SCS(/, r). Thus a plain concatenation already achieves an approximation ratio r.

THEOREM 3.4. SCS(2, 3) does not have a PTAS unless P NP.
Proof A polynomial-time reduction from the feedback vertex set problem on bounded-

degree digraphs [9] to SCS(2, 3) is given in [28]. Let G (V, E) be a digraph of degree 3.
The reduction defines a set S {uvl(u, v) E}. Clearly, S is an instance of SCS(2, 3). It is
shown that G has a feedback vertex set of size if and only if S has a common supersequence
of length [VI + t.

It is easy to L-reduce vertex cover on bounded-degree graphs to feedback vertex set on
bounded-degree graphs by replacing each edge in the instance of vertex cover with a directed
cycle. The reduction from feedback vertex set to SCS(2, 3) is actually linear for the digraphs
resulting from this construction, because the optimal feedback vertex set for these graphs is
linear in ]VI. Since the composition of two L-reductions is an L-reduction, we have an L-
reduction from the vertex cover problem on bounded degree graphs to SCS(2, 3). The theorem
follows from the fact that vertex cover on bounded degree graphs is MAX SNP-hard. [

The status of the complexity of approximating SCS on a fixed alphabet is quite similar to
that for LCS. We can show that SCS on a fixed alphabet has a trivial constant ratio approxima-
tion. But we do not know if the problem is MAX SNP-hard. Again, observe that the reduction
in Maier’s original proof of the NP-hardness for SCS on a bounded alphabet is not linear.

THEOREM 3.5. Let 12 be an alphabet ofk letters. For any set S ofsequencesfrom 12, we
can find a common supersequencefor S of length at most k. OPT(S in polynomial time.
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APPROXIMATION OF SUPERSEQUENCES AND SUBSEQUENCES 1127

Proof. Let/max be the maximum length of input sequences in S. Then (al ak)lmx is a
common supersequence for S satisfying the length requirement. [2

Conjecture. SCS on a binary alphabet is MAX SNP-hard.

3.3. The product of sets of sequences. First, we extend the operation "concatenation
to sets of sequences. Let X and Y be two sets of sequences. Define the concatenation of
X, Y, denoted X Y, as the set {x ylx X, y Y}. For example, if X {abab, aabb} and
Y {123, 231,312}, then

X Y {abab123, aabb123, abab231, aabb231, abab312, aabb312}.

The following lemma is quite useful in our construction.
LEMMA 3.6. Let X X X2... X,,. Suppose that y is a supersequence for X. Then

there exist Yt, Y2 Yn :such that y Yl Y...o Yn and each Yi is a supersequence for Xi,
l<i<n.

in’}. Fix a sequence xProof. Let Xt {x,.. Xp} and X’ X2oo, X {x’ Xq
X’. Since the supersequence y contains x .x xp x as subsequences, it must contain

where yl,i is a supersequence for X To see this, just consider thea subsequence yl,i "xi,
of y The rightmostin the subsequences x .x Xp .xpositions of the first letter of x

occurrence gives yl,i. See Fig. 1. In the figure, the .’s represent sequences x xp and the
#’s represent the sequences x Xq. The sequences are aligned according to their relative
positions in y.

Thus, for each < < q, we have a sequence Yl,i such that yl,i is a supersequence for

X and yl,i x is a subsequence of y. Now we consider the positions of the last letter of
of y and partition y at the leftmostYt. Yl,q in the subsequences y,l "Xl Yl,q Xq

such position. Let the left part of y be Yl and the right part be y’. Then, clearly, Yl is a
supersequence for X and y’ is a supersequence for X’. See Fig. 2. In this figure, the .’s now
represent sequences y, Yl,q.

We can do this recursively on y’ and Y’ to obtain Y2,
We are now ready to define the product of sets of sequences. The symbol x will be used

to denote the product operation. We start by defining the product of single letters. Let E and
I2’ be two alphabets and a E, b E’ be two letters. The product of a and b is simply the
composite letter (a, b) E x 12’. The product of a sequence x a a2... a,, and a letter
b is a x b a2 b an x b. The product of a set X {x, x2 xn} of sequences
and a letter a is the set {Xl x a, x2 x a xn x a}. The product of a set X of sequences
and a sequence y a .a2..o a,, is the set X x a X x a2 X an. Finally, let X and
Y {Y, Y2 y, be two sets of sequences. The product of X and Y is the set Ui=1X x yio

For example, if X {aabb, abab} and Y 121,212}, then X x Y contains the 16 sequences
in Fig. 3.

x 1 *** **** *** ### ## ### xi’
x2 *** **** **** ***** #### #### x

Xp ** ***** ***** ## ### ### xi
Yl,i

FIG. 1. Finding Yl,i in the supersequence y.
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1128 TAO JIANG AND MING LI

Yl,1 ** *** *** *** ## ## ## ### X’1

Y 1,2

Yl,q ** **** ** **** ### ## ## ## ####

yt .
FG. 2. Finding y in the supersequence y.

X’q

(a, 1)(a, l)(b, 1)(b, 1)(a, 2)(a, 2)(b, 2)(b, 2)(a, 1)(a, l)(b, 1)(b, 1)

(a, 1)(a, l)(b, 1)(b, 1)(a, 2)(a, 2)(b, 2)(b, 2)(a, 1)(b, 1)(a, 1)(b, 1)

(a, 1)(a, l)(b, 1)(b, 1)(a, 2)(b, 2)(a, 2)(b, 2)(a, 1)(a, 1)(b, 1)(b, 1)

(a, 1)(a, 1)(b, 1)(b, 1)(a, 2)(b, 2)(a, 2)(b, 2)(a, 1)(b, 1)(a, 1)(b, 1)

(a, l)(b, l)(a, 1)(b, 1)(a, 2)(a, 2)(b, 2)(b, 2)(a, 1)(a, 1)(b, 1)(b, 1)

(a, 1)(b, l)(a, l)(b, 1)(a, 2)(a, 2)(b, 2)(b, 2)(a, 1)(b, l)(a, 1)(b, 1)

(a, 1)(b, 1)(a, 1)(b, 1)(a, 2)(b, 2)(a, 2)(b, 2)(a, l)(a, 1)(b, 1)(b, 1)

(a, 1)(b, 1)(a, 1)(b, 1)(a, 2)(b, 2)(a, 2)(b, 2)(a, 1)(b, 1)(a, l)(b, 1)

(a, 2)(a, 2)(b, 2)(b, 2)(a, 1)(a, l)(b, l)(b, l)(a, 2)(a, 2)(b, 2)(b, 2)

(a, 2)(a, 2)(b, 2)(b, 2)(a, 1)(a, 1)(b, 1)(b, 1)(a, 2)(b, 2)(a, 2)(b, 2)

(a, 2)(a, 2)(b, 2)(b, 2)(a, 1)(b, 1)(a, 1)(b, 1)(a, 2)(a, 2)(b, 2)(b, 2)

(a, 2)(a, 2)(b, 2)(b, 2)(a, 1)(b, 1)(a, 1)(b, 1)(a, 2)(b, 2)(a, 2)(b, 2)

(a, 2)(b, 2)(a, 2)(b, 2)(a, 1)(a, l)(b, 1)(b, 1)(a, 2)(a, 2)(b, 2)(b, 2)

(a, 2)(b, 2)(a, 2)(b, 2)(a, 1)(a, l)(b, 1)(b, 1)(a, 2)(b, 2)(a, 2)(b, 2)

(a, 2)(b, 2)(a, 2)(b, 2)(a, 1)(b, 1)(a, 1)(b, 1)(a, 2)(a, 2)(b, 2)(b, 2)

(a, 2)(b, 2)(a, 2)(b, 2)(a, 1)(b, 1)(a, 1)(b, 1)(a, 2)(b, 2)(a, 2)(b, 2)

FIG. 3. The product of {aabb, abab} and {121,212}.

Note that if each sequence in X has length l and each sequence in Y has length 12, then
X x Y contains Y[" XIh sequences of length l 12. Thus, X x Y does not have polynomial
size in general.

In this paper, we will only be interested in products in which the second operand has a
special property. Let Y be a set of sequences with the following property: each sequence is of
even length and every letter at an even position is unique in Y, i.e., the letter appears only once
(totally) in all sequences in Y. We will refer to such unique letters as delimiters. The following
lemma relates the SCS of a product to the SCS’s of its operands and is crucial to 3.4.

LEMMA 3.7. Let X and Y be sets of sequences. Suppose that Y has the above special
property. Then OPT(X x Y) OPT(X) OPT(Y). Moreover, given a supersequence for
X x Y oflength l, we canfind in time polynomial in IX x YI supersequencesfor X and Y of
lengths ll and 12, respectively, such that Ii 12 <_ I.D
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APPROXIMATION OF SUPERSEQUENCES AND SUBSEQUENCES 1129

Proof Clearly, OPT(X Y) _< OPT(X) OPT(Y). Suppose that z is a supersequence
for X Y of length l. We show how to find supersequences for X and Y of lengths l and
12, respectively, such that l 12 _< in polynomial time. Let E be the alphabet corresponding
to Y. For each letter a 6 E, we call the product X a an a component. The letters are
divided into delimiters and nondelimiters. For convenience, call the nondelimiters normal
letters. Our basic idea is to rearrange the supersequence z without increasing length such that
each component appears in a consecutive region. Then we can "extract" the components and
identify the desired supersequences for X and Y.

Using Lemma 3.6, we can extract from z a supersequence for each delimiter component.
as follows. Let y alaz..an be a sequence in Y. Consider the delimiter a2. Since z
is a supersequence for the product X y X a X a2... X an, there must be
Zl, z2 Zn such that zi is a supersequence for X ai and z zl z,,2... Z,n. NOW we look at

z2 and concentrate on the sequences in the a2 component. We can rearrange z2 such that the
letters appearing in the a. component form a consecutive block by shifting them to the right

Since a2 is unique in Y zl z2appropriately. Denote the new sequence Z2 Z.n is also a
supersequence for X Y. This way we have extracted a supersequence for the a2 component.
Supersequences for other delimiter components can be extracted similarly. Note that the above
does not increase the length of the whole supersequence.

Call the final supersequence after the above process z’o So z’ has the form u . v. u2"/32

where each vi is a supersequence for some delimiter component and ui is a sequence of letters
from some normal components. We can easily rearrange z’ so that each u actually becomes
either nil or a supersequence for some normal component by shifting the normal component
letters to the rightmost possible position (stopped only by some relevant delimiter block).
Thus we now have a supersequence of the form u’ v u2 v2 where each u’i is either
nil or a supersequence for some normal component Now the pattern u’ v u v2
naturally defines a supersequence for Y. Let l be the minimum length of the supersequences
for the components (and thus X) and 12. be the length of the supersequence for Y. Then
ll.12 <1.

3.4. SCS has no linear approximation algorithms. The basic idea is to use the product
operation to blow up a given instance of SCS. However, the product of sets of sequences
cannot be performed in polynomial time unless the the second operand contains sequences
of bounded length. Thus we consider the restricted version SCS(2, 3). A nice thing about
SCS(2, 3) is the fact that for any instance S of SCS(2, 3), the total length of the sequences in S
is at most 3.OPT(S). Thus, we can insert unique delimiters into the sequences as required in

3.3 without affecting the MAX SNP-hardness. So, let SCS(2, 3)’ denote the version whose
instances are obtained from instances of SCS(2, 3) by inserting unique delimiters. Let S be
an instance of SCS(2, 3) of total length n and S’ be the corresponding instance of SCS(2, 3)’.
It is easy to see that S has a common supersequence of length if and only if S’ has a common
supersequence of length n + t. Since 0(n), this forms an L-reduction from SCS(2, 3) to
SCS(2, 3)’, and hence SCS(2, 3)’ is also MAX SNP-hard.

For any set S, S denotes the product of k S’s. The next lemma follows from Lemma 3.7.
LEMMA 3.8. Let k > be a fixed integer. For any instance S ofSCS(2, 3)’, OPT(S)

OPT(S). Moreover, given a supersequencefor S oflength l, we canfind in polynomial time
a supersequencefor S of length /k.

Observe that if lSI n, then Skl n4, since each sequence in S has length 4. Now
we can prove the main result, in this section.D

ow
nl

oa
de

d 
05

/1
5/

15
 to

 1
28

.4
.3

1.
97

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



1130 TAO JIANG AND MING LI

THEOREM 3.9. (i) There does not exist a polynomial-time linear approximation algorithm
for SCS unless P NP. (ii) There exists a constant > 0 such that, ifSCS has a polynomial-
time approximation algorithm with ratio log n, where n is the number of input sequences,
then NP is contained in DTII[E(2plylg n).

Proof. We only prove (i). The proof of (ii) is similar. The idea is to show that if SCS has
a polynomial-time linear approximation algorithm, then SCS(2, 3)’ has a PTAS. Suppose that.
SCS has a polynomial-time approximation algorithm with performance ratio or. For any given
> 0, let k [log+ ot]. Then, by Lemma 3.8, we have an approximation algorithm for

SCS(2, 3)’ with ratio ot/ < + . The algorithm runs in time g/O(4k), thus it is polynomial
in n. This implies a PTAS for SCS(2, 3)’. [3

It is interesting to note that our nonapproximability result for SCS is weaker than that
of LCS (and the longest path problem in [14]). It seems to require new techniques to

prove a stronger lower bound. The growth rate of n4 is too high. This is essentially
a result of the way we define the product of sets of sequences. If we can find a bet-
ter way of taking products and lower the rate to something like n, then the bound in
(ii) can be strengthened to 2lgn for any 6 < 1, as shown in [14] for the longest path
problem.

4. Algorithms with good average-case performance. We have seen that the LCS and
SCS problems are not only NP-hard to solve exactly, but also NP-hard to approximate.
The approximation of these problems restricted to fixed alphabets also seems to be hard.
In this section, we consider the average-case performance of some simple greedy algo-
rithms for LCS and SCS and prove that these algorithms can find a nearly optimal so-
lution in almost all the cases, assuming that all sequences are equally likely and the se-
quences are independent of each other. Note that our probability model may not be real-
istic, because in practice the sequences are usually related to each other and thus are not

independent.
From now on, let E {al a} be a fixed alphabet of size k. For convenience, we

will assume that the input is always n sequences over E, each of length n, although our results
actually hold when the number of input sequences is polynomial in n. We prove that some
remarkably simple greedy algorithms can approximate LCS and SCS with minor expected
additive errors. Some of the technical results are actually quite interesting in their own right.
They give tight bounds on the expected length of an LCS or SCS of n random sequences of
length n. It turns out that Kolmogorov complexity is a convenient and crucial tool for our
analyses.

4.1. Kolmogorov complexity. Kolmogorov complexity has been used in [8] as an ef-
fective method for analyzing the average-case performance of some algorithms for the SCS
problem. It was also used recently by Munro (see [17]) to obtain the average-case com-
plexity of Heapsort, solving a long-standing open question. Here we use Kolmogorov com-
plexity as a tool for analyzing some combinatorial properties of random sequences which
result in tight upper and lower bounds on the average-case performance of some algorithms
for LCS and SCS problems. One can compare the use of Kolmogorov complexity with
the probabilistic method. In a sense, taking a Kolmogorov random string as the input is
like taking an expectation as in the second moment method. A Kolmogorov random input
has the random string properties, yet these properties hold with certainty rather than with
some (high) probability. This fact greatly simplifies many proofs. To make this paper self
contained, we briefly review the definition and some properties of Kolmogorov complex-
ity, tailored to our needs. For a complete treatment of this subject, see 17] or the survey
[16].
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APPROXIMATION OF SUPERSEQUENCES AND SUBSEQUENCES 1131

Fix a universal Turing machine U with input alphabet E. The machine U takes two
parameters p and y. U interprets p as a program and simulates p on input yo The Kolmogorov
complexity of a string x 6 E*, given y 6 E*, is defined as

Kt.(xly) min{Ipl U(p, y) x}.

Because one can prove an invariance theorem that claims that Kolmogorov complexity, defined
with respect to any two different universal machines, differs by only an additive constant, we
will drop the subscript U. In fact, for the purpose of our analysis, one fixed universal Turing
machine is always assumed. Thus K(xly) is the minimum number of digits (i.e., letters in E)
in a description from which x can be effectively reconstructed, given y Let K(x) K(x].),
where . denotes the null string.

By simple counting, for each n, c < n, and y, there are at least E 1" E ’-’ / distinct
x’s of length n with the property

(1) K(xly) > n c.

We call a string x of length n random if

K(x) n- logn,

where the logarithm is taken over base [EI. Sometimes, we need to encode x in a self-
delimiting form Y to be able to decompose Yy into x and y. One possible coding for Y may be
10L(x) 10x, where L(x) is the binary representation of Ixl with each bit doubled. (Assume that
0, 6 E.) For example, ifx 0000000, Ixl 111 inbinary, and L(x)= 111111. This costs
us about 2 log Ix extra bits. Thus, the self-delimiting representation Y of x requires at most

Ixl / 2 log Ixl / 4 digits [16]. Note that our Kolmogorov complexity is a bit unconventional,
since here we consider strings over the arbitrary fixed alphabet E instead of binary strings.

4.2. Longest common subsequences: The average case. We have shown that the LCS
problem cannot be approximated with ratio n for some 6 > 0 in polynomial time unless
NP P. Thus no polynomial-time algorithm can produce even approximately long com-
mon subsequences. However, this claim only holds for the (probably extremely rare) worst
cases. Here we would like to show that for random input sequences, the LCS problem can be
approximated up to a small additive error.

THEOREM 4.1. For an input set S containing n sequences of length n, the algorithm
Long-Run approximates the LCS with an expected additive error O(n /2+) for arbitrarily
small > O.

The proof is based on the following two lemmas which give a lower bound on the per-
formance of Long-Run and an upper bound on the length of an LCS for a set of Kolmogorov
random strings.

LEMMA 4.2. Let > 0 be any constant and x, a string of length n. Ifsome letter a E
1/2+ 1/2+:appears in x less than - n times or more than - + n times, thenfor some constant

6>0,

K (xi) <_ n cn2

Proof. In principle, this result can be proved using methods in [18]. By encoding each
letter as a binary string of log2 k bits, the results in 18] imply that, when logz k is an integer,
the lemma is true. To show the general case, we simply do a direct estimation as follows.

1/2+Suppose that for some letter a 6 E, x contains only d n a’s. There are only

n ) ),,_/(-
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1132 TAO JIANG AND MING LI

strings of length n with d occurrences of a. Taking a logarithm with base k would give us the
number of digits specifying xi. By an elementary estimation (using Stirling’s formula), we
can show that

(2) n) )n-algk d (k < n n2

for some 6 > 0. Thus K(xi) < n -n2.
Now consider a fixed Kolmogorov random string x of length n2o Cut x into n equal-length

pieces X xn. It follows from Lemma 4.2 and the randomness of x that, for each a
a appears in each of x x,, at least f O (n 1/2+) times for any small > 0. Thus

(3) an/k’-O(n/’+)

is a common subsequence of sequences xl x,,. In the next lemma, we show that an LCS
for xl xn cannot really be much longer than the one in formula (3).

LEMMA 4.3. For any common subsequence s ofx x,,

(4) [s[ < + n-+.

Proof For the purpose of making a contradiction, suppose that

Isl + n

We will try to compress x using s. The idea is to save n digits for some 3 > 0 on each xi.
Fix anxi. We do another encoding ofxi. Lets sis2... Sp, p Is[. We align the letters

in s with the corresponding letters in xi greedily from left to right and rewrite xi as follows"

(5) 01S10/2S2... OlpSpX

Here 1 is the longest prefix of X containing no s, O(2 is the longest substring of Xi starting
from s containing no s2, and so on. x is the remaining part of xi after s,. Thus otj does not
contain letter sj for j p. That is, each otj contains at most k letters in E. In
other words, O/j E ( {Sj })*.

We now show that xi can be compressed by at least n digits for some 3 > 0 with the help
of s. In fact, it is sufficient to prove that the prefix

(6) y OIISIO/2S2 OlpSp,

can be compressed by this amount.
Using s, we know which k letters in E appear in O/i for each i. Thus we can recode y

as follows. For each i, if si ak, then do nothing. Otherwise, replace si by ak, the last letter
in E, and in oti, replace every ak by si. We can convert this transformed string y’ back to y
using s by reversing above process.

1/2+Now this transformed string y’ is also a string over E. But in y’ letter ak appears f +n
times, since Is is at least this long. By Lemma 4.2, for some constant > 0, we have

n2
K (y’) <_ lY’I- k
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APPROXIMATION OF SUPERSEQUENCES AND SUBSEQUENCES 1133

But from y’ and s we can obtain y, and hence, together with a self-delimiting form of xi, we
can obtain xi. We conclude that

K(xils) <_ n- / O(logn),
k

where the term O(log n) takes care of the extra digits required for the self-delimiting repre-
sentation of x and the description of the above procedure.

We repeat the above argument for every xi. In total, we save (n l+2e digits encoding
Thus,

K(x) < n2 (n l+2e) / Is] + O(n logn) < ]xl log

Therefore, x is not random, and we have a contradiction! S
We are now ready to prove the theorem.

Proofof Theorem 4.1. Consider all possible inputs of n sequences of length n. For each
such input, we concatenate the n sequences together to obtain one string. Only about 1/n2

of them are not random by formula (1). That is, only 1/n2 of them do not satisfy K (x) >_
Ix] log Ix 1. For all the others, the above lower and upper bounds apply, and the algorithm
Long-Run produces a common subsequence that is at most O(n /2+) shorter than the LCS
for any fixed e > 0. Observe that the worst-case error of Long-Run is (k 1)n/k. Thus, a
simple averaging shows that the expected error of Long-Run is O (n 1/2+e) for any fixed e > 0.

Lemmas 4.2 and 4.3 actually give very tight upper and lower bounds on the expected
LCS length of n random sequences of length n. We note in passing that the same problem for
two sequences is still open and there is a large gap between the current best upper and lower
bounds [2], [5], [24].

COROLLARY 4.4. The expected length ofan LCSfor a set ofn random sequences oflength
n 1/2+e for any > O.n is -4.3. Shortest eOnllnon supersequenees: The average ease. In [8], the performance of

the following algorithm for the SCS problem is analyzed.

ALGORITHM MAJORITY-MERGE
1. Input: n sequences, each of length n.
2. Set supersequence s := null string;
3. Let a be the majority among the leftmost letters of the remaining sequences. Set

s :-- sa and delete the front a from these sequences. Repeat this step until no
sequences are left.

4. Output s.

It is shown in [8] that, on an alphabet of size k, Majority-Merge produces a common
supersequence of length O (n log n) in the worst case and a common supersequence of length
(k / 1)n/2 / O (/-) on the average. In the next theorem, we will show that. its average-case
performance is actually near optimal.

THEOREM 4.5. For a set S containing n sequences over I2 of length n, the algorithm
Majority-Merge approximates the SCS with an expected additive error O(n), where
x//2 0.707.

As in the proof of Theorem 4.1, we first consider Kolmogorov random strings and obtain
some tight upper bound on the performance of the algorithm Majority-Merge and a lower
bound on the length of the SCS. So, again, fix a Kolmogorov random string x of length n2

and cut x into n equal-length pieces x x,,. Let S {x x,,}. It is shown in [8] that
Majority-Merge actually finds a common supersequence of length (k + l)n/2 + O(x/-d) on
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1134 TAO JIANG AND MING LI

the set S. Hence, it suffices to prove that OPT(S) >_ (k + 1)n/2 O(na). We prove this in
what follows by using essential properties of Kolmogorov random strings.

Fix an arbitrary SCS s ss2.., st for S and let t denote the procedure that produces s
on set S by scanning the input sequences from left to fight and merging common letters. We
want to show that

l>
(k+l)n

_O(n).
2

Note that (i) clearly < kn and (ii) t is uniquely determined by the SCS s. Let us arrange
the input sequences x x,, as an n n matrix M with xi as row i. For each < < l, call
the sequence from top to bottom, consisting of the first letters in the remaining input sequences
after steps of,A the ithfrontier. Thus a frontier is just a jagged line from top to bottom,
indicating which letter is being considered by 4 at the moment in each sequence xi.

Since 4 totally merges n2 letters in producing s, the number n2/l represents the average
number of letters merged by 4 in one step. We want to show that on the average, t merges
at most 2n/(k + 1) + O(n) letters in a step for some 3 < 1, i.e.,

n2 2n
< + O(n)
(+)

This would imply that >_ (k + 1)n/2 O(n).
CLAIM 4.6. On the average, .A merges at most 2n/(k + 1) + 0 (n) letters in a step.

Proof The basic idea is to show that the average merge amount takes its maximum
when the supersequence s is of the form zr* for some permutation rr of alphabet E, using the
property that after each merge, the successors of the merged letters are "generated" according
to a fair-coin rule, i.e., the letters a a, must be distributed evenly among these "new"
letters. This property holds because the matrix M is random.

For each < < and _< j < k, let rij denote the number of letter aj contained in

frontier i. Define ri Y=I ri,j for each as the length of frontier i. Clearly, n rl > >

rt. Let l0 be the smallest index such that rt0 < 2n/(k + 1). Then we only need to prove an
upper bound of 2n/(k + 1) + O(n) on the average amount of merges made by .A up to step
10, since it merges at most 2n/(k + 1) letters every step after step 10. For each _< _< 10,
denote the number of letters merged at step as mi.

First we would like to show that, at any step, if a large number of some letter a is merged,
then the new letters immediately behind these a’s in the involved input sequences should have
approximately equal share of the letters a ak. In view of Lemma 4.2, this is true as long
as we can show that the subsequence consisting of these new letters in the next frontier is more
or less random. We need the following lemma, which indirectly proves the randomness of
this subsequence.

LEMMA 4.7. Let frontier(i) be the list ofpositions indicating where the ith frontier cuts
through sequences x xn. Let M’ be the all the letters on the left of the ith frontier
including the ith frontier, plainly listed column by columnfrom left to right. Then,

K(frontier(i)ls i, M’, n) 5 O(1).

Proof Given s, i, M’, n, we can simulate 1,, together with s, on partial input M’ for
steps. Then we should have the positions for the th frontier. Note that in the listing of M’ it
is not necessary that each column is of length n, since some input sequences may have already
run out. But this can be detected easily using n. Thus in all the future steps, we know that
these sequences are not present any more and can correctly arrange the letters of M’.
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APPROXIMATION OF SUPERSEQUENCES AND SUBSEQUENCES 1135

In the following calculation, let e be the solution of the following equation:

-23 =3,

where 3 + e. So e (,,/ 1)/2 , 0.207 and 3 ,f/2 0.707.
Let < l0 be any index. Suppose that the letter aj E is chosen to be merged by

4 at step i. If the letter aj appears in the ith frontier f2 (n) times, i.e., ri.j f2 (n), then
by Lemma 4.2, if the letters a ak are unevenly distributed among the subsequence of
frontier + consisting of the successors of these merged aj’s, then we can compress this
subsequence by f2 (n2a) letters

LEMMA 4.8. There are at most O(n-2) O(n) subsequences of tength n f2(n)
such that some letter appears n/2+ more often (or less often) than the average n‘t / k in these
subsequences.

Proof. Otherwise we can describe the random rnatrix M by simply listing all the letters
other than those appearing in the subsequences mentioned above, recording the supersequence
s and the locations (i.e., indices) of the subsequences and compressing the subsequences using
s. Since we save f2(n2e) letters on each such subsequence by Lemma 4.2, in total we save
more than f2 (nl-2) ff2(n2) (n) letters. Thus we can encode x in less than Ixl- log
letters. Note that by Lemma 4.7, the position of the letters of frontier in their corresponding
input sequence can be derived from s, i, n, and the preceding frontiers.

Let the frontiers containing the q O (n) unevenly distributed subsequences be indexed
pl pq. Let P0 and Pq+l l0 + 1. Cut M into q + sections Mo Mq, where

Mi begins at frontier pi and ends at frontier pi+l 1.
Now we fix a section Mg and calculate the total amount of merges made by A in Mg.

Since the letters in each set of new letters (after a merge) are distributed uniformly within this
section, we have the following relation between ri+l,j and ri,j. Suppose that the letter ah is
merged at step i, pg < < pg+. Then ri+l,j ri,j + ri,h/ k -t- O(n) for each j h, and
ri+l,h ri,h/k -4- O(n). (Note that the recurrence is automatically true if ri,h < O(n3).) To
simplify the presentation, we will drop the minor term O(n) below when using the above
recurrence relation and simply add O(n) (pg+ pg) later to the total amount of merges in
section Mg. It is easy to verify that in the worst case this fluctuation of magnitude O (n) can
add at most k O(n) O(n) to the average merge amount.

Define a function/9(tl tk, i, j) satisfying the following recurrence relation:

p(t tk, i, 1) ti, < <_ k,

p(tl, tk, j mod k j+ 1)
p(t tk, j mod k, j)

k

p(t t, j + mod k, j + 1) p(tl t, j + rood k, j)

p(t t, j mod k, j)
+

k

p(tl t,j+k- lmodk, j+ 1) p(t t,j+k- modk, j)

p(tl t, j rood k, j)

k

Intuitively, the function p(t t, i, j) corresponds to the distribution of letters a
a in the frontiers if the letters are merged following the sequence rr*, where rr ai. ai is
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1136 TAO JIANG AND MING LI

some permutation of E and, initially, the letters ai, ai, are distributed as (t tk). Let

/Z(tl tk, i) p(tl tk, j rood k, j).
j=l

Thus/z(tt t, i) represents the total amount of merges achieved following the sequence
n’* for steps, given the initial distribution (t tk) of letters ai ai. It can be shown
that

/z(tl t,, i) Z co(i j + 1) .t],
j=l

where co(i) is a function defined recursively as follows:

co(i) 0, i_<0,

k

co(i) + co(i- j)/k,
j=l

i>1.

Intuitively, the number co(i j + 1) represents the total contribution to the amount of
merges achieved in steps from a letter that is merged at step j, __< j _< i. Note that co (i) is
an increasing function. We can prove the following lemma by induction.

LEMMA 4.9. Let be any index such that pg <_ <_ pg+l 1. Suppose that ri.j, > >_.

ri,j, where j jk is some permutation of k. Then S"p’+’-I
z.-,j=i mj <_ Ll,(ri,j ri,jk,

Pg+l i).
Proof The lemma holds clearly if pg+! 1. Now we prove that the lemma holds for

i, assuming that it holds for + 1. For convenience, here we assume that j jk k.
Suppose that ,A merges the letter ah at step i. Then

Pt+ p.+

Z mj --ri,h-t- mj
j=i j=i+!

ri,h q-/z(ri+l,1 ri.+l,h-l, ri.+.l,h+l ri+l,k, ri+l,h, Pg+l 1),

where ri+l,j ri,j -+- ri,h/k for each j -J: h, and ri+l,h = ri,h/k. Observe that ri+l,l > >_.
ri+l,h-I >_. ri+l,h+l >_’’" >_ ri+l,k >_ ri+.l,h. However,

ri,h + /z(ri+l,I ri+l,h-l, ri+ l,h.+ ri+l,k, ri+l,h, Pg+l 1)

lz(ri,h, ri, ri,h-l, ri,h+l ri,k, Pg+l i)

CO(Pg+I i), ri,h "- CO(Pg+I 1) "ri, q-’’" "4r co(Pg+I h + 1) ri,h-t

+ ro(pg+ h).ri,h+l .+.., + co(Pg+l k + 1) ri,k

_< co(Pg+l i). ri, +’" + co(Pg+l k + 1) ri,k

bl.(ri, ri,k, Pg+l i).

The above inequality holds because co(j) is increasing and ri.l >_ >_. ri,k. [3

D
ow

nl
oa

de
d 

05
/1

5/
15

 to
 1

28
.4

.3
1.

97
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



APPROXIMATION OF SUPERSEQUENCES AND SUBSEQUENCES 1137

Hence, the total amount of merges made by 4 in section Mg is

p+

Z mj <_ #(rp,,,1 rp,k, Pg+l Pg)
j=Pg

k

o)(Pg+l pg + j) rp,,j
j-I

k

< Z a)(pg.+l pg) rp,,j
j=l

k

= o)(Pg+l pg) rpg,j
j=l

__< W(Pg+l pg)’ n.

We need one more lemma.
2iLEMMA4.10. w(i) < + 1.

Proof Clearly, the lemma holds for all < 1, Now suppose that it holds for all < h for
some h. Then

k

4- 1) 1+ Ze(h + j)/k(.o(h
j=l

k 2(h + j)_<2+
= k(k + 1)

2(h+l)-k-
=2+

k+l
2(h + 1)

=1+, [3
k+l

Therefore,

P"+’X-,t- 2n(pg+ pg)
mj < W(Pg+l- p.g n < + n,

k+lj=Pg

Now we add O(n) (p,e+ pg) back to the above bound and conclude that the total amount
of merges in section Mg is at most

2n(pg+ pg) + n + O(n) (pg+, p).
k+l

Thus, the total amount of merges in all sections is

2n(pg+ + n + O(n) (pg+ pg)
Pg)

k+lg=O

znto,. + n(q + l) + O(n) lo
k+l

___._2nl _f. n O(n) + O(n) lo
k+l
2nlo

-f- O (n lo.
k+l
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1138 TAO JIANG AND MING LI

2nThat is, the overall average amount of merges is + O(n) + O(n0"707). This
completes the proof of the claim. [2

Proof of Theorem 4.5. As in the argument at the end of the proof of Theorem 4.1, and
because Majority-Merge produces a common supersequence of length O (n log n) in the worst
case [8], the algorithm has an expected additive error O(n77).

The above proof implies the following interesting corollary.
COROLLARY 4.11. The expected length of an SCS for a set of n random ,sequences of

length n is (k + 1)n/2 4- O (n0"707).
As we mentioned before, both Theorems 4.1 and 4.5 actually hold for inputs consisting

of p(n) sequences of length n, where p() is some fixed polynomial.

5. Some remarks. A problem that is closely related to the SCS problem is the short-
est common superstring problem. Although this problem is also NP-hard, the status of its
approximation complexity is quite different. Glum et al. have shown that shortest common
superstring problem can be approximated within a factor of 3 in polynomial time [4], They
also showed that the problem (on an unbounded alphabet) is MAX SNP-hard.
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tions, and we thank C. Fraser for a correction,

REFERENCES

A. AHO, J. HOPCROFr, AND J. ULLMAN, Data Structures andAlgorithms, Addison-Wesley, Reading, MA, 1983.
[2] K. ALEXANDER, The rate of convergence of the mean length of the longest common subsequence, 1992,

manuscripL
[3] A. ARORA, C. LUND, Ro MOTWANI, M. SUDAN, AND M. SZEGEDY, Pro().[ verification and hardness of approxi-

mation problems, in Proc. 33rd IEEE Symposium on Foundations of Computer Science, Pittsburgh, PA,
1992, pp. 14-23.

[4] A. GLUM, T. JIANG, M. LI, J, ’]"ROMP, AND M. YANNAKAKIS, Linear approximation ofshortest superstrings, in
Proc. 23rd ACM Symposium on Theory of Computing, 1991, pp. 328-336; J. Assoc. Comput. Mach., to

appear.
[5] V. CHVATAL AND D. SANKOFF, Longest common subsequences of two random sequences, Jo Appl. Probab. 12

(1975), pp. 306-315.
[6] M. O. DAYHOFF, Computer analysis ofprotein evolution, Sci. Amer., 221 (1969), pp. 86-95.
[7] D. E. FOULSER, On random strings and sequence comparisons, Ph.D. thesis, Computer Science Department,

Stanford University, 1986.
[8] D. E. FOULSER, M. LI, AND Q. YANG, Theory and algorithms for plan merging, Artificial Intelligence, 57

(1992), pp. 143-181.
[9] GAREY AND D. JOHNSON, Computers and Intractability, W. H. Freeman, New York, 1979.

[10] C. C. HAYES, A model ofplanning for plan efficiency: Taking advantage of operator overlap, in Proc. lth
International Joint Conference of Artificial Intelligence, Detroit, Michigan, 1989, pp. 949-953.

[11] D.S. HIRSCHBERG, The longest common subsequence problem, Ph.D. thesis, Princeton University, 1975.
[12] W. J. Hsu AND M. W. DI.I, Computing a longest common subsequencefor a set of strings, BIT 24. (1984),

pp. 45-59.
[13] R. W. IRVING AND C. B. FRASER, Two algorithms .[’or the longest common subsequence of three (or more)

strings, in Proc. Symposium on Combinatorial Pattern Matching, Tucson, AZ, 1992.
[14] D. KARGER, R. MOTWANI, AND G. D. S. RAMKUMAR, On approximating the longest path in a graph, in Proc.

Workshop on Algorithms and Data Structure, Montreal, Canada, 1993, pp. 421-432.
[15] R. KARINTHI, D. S. NAU, AND Q. YANG, Handling [eature interactions in process planning, J. Appl. Artif.

Intell., 6 (1992), pp. 389-415.
[16] M. L AND R M. B. VTANYI, Kolmogorov complexity and its applications, in Handbook of Theoretical Com-

puter Science, Vol. A, J van Leeuwen, ed., Elsevier/MIT Press, New York, NY, Cambridge, MA, 1990,
pp. 187-254.

17] An Introduction to Kolmogorov Complexity and Its Applications, Springer-Verlag, New York, Berlin,
Heidelberg, 1993.

D
ow

nl
oa

de
d 

05
/1

5/
15

 to
 1

28
.4

.3
1.

97
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



APPROXIMATION OF SUPERSEQUENCES AND SUBSEQUENCES 139

18] M. LI AND P. M. B, VITAN’I, Combinatorial properties offinite sequences with high Kolmogorov complexity,
Math. Systems Theory, to appear.

19] S, Y. LtJ AND K. S. Ft, A sentence-to-sentence clustering procedure.[brpattern analysis, IEEE Trans. Systems.
Man Cybernet, SMC-8(5) (1978), pp. 381-389.

[20] C. LUND ANt M, YANNAKAKIS, On the hardness of approximating minimization problems, in Proc. ACM
Symposium Theory of Computing, San Diego, CA, 1993, pp. 286-293.

[21] D. MAIER, The complexity ofsome problems on subsequences and supersequences J. Assoc, Comput, Macho
25 (1978), pp. 322-336.

[22] C. H. PAPADIMITRIOU AND M. YANNAKAKIS, Optimization, approximation, and complexity classes, J. Comput.
System Sci., 43 (1991), pp. 425-440.

[23] K. RAHA AND E. UKKONEN, The shortest common supersequenceproblem over bina, alphabet is NP-complete,
Theoret. Comput. Sci., 16 1981), pp. 187-198.

[24] D. SANKOFt AND J. KRUSKALL, EDS., Time Warps, String Edits, and Macromolecules: The Theo and Practice

ofSequence Comparison, Addison-Wesley, Reading, MA, 1983.
[25] T. SELLIS, Multiple query.’ optimization, ACM Trans. Database Systems, 13 (1988), pp. 23--.52.
[26] T, E SMITH AND M. S. WATERMAN, Identification of common molecular subsequences, J. Molecular Biology,

147 (1981), pp. 195--197.
[27] J. STORER, Data Compression: Methods and Theo’, Computer Science Press, Rockville, MD, 1988.
[28] V. G. TIMKOVSKII, Complexity of common subsequence and supersequence problems and related problems

Kibernetika, 5 (1989), pp. 1-13. (English translation.)
[29] R.A. WAGNER AND M.. J. FISCHER, The string-to-string correction problem J. Assoc. Comput. Mach., 21 1974)

pp. 168-.- 173.

D
ow

nl
oa

de
d 

05
/1

5/
15

 to
 1

28
.4

.3
1.

97
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p


